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Noise in Single-Frequency Oscillators and Amplifiers

REIDAR

Abstract—A generalization of previous oscillator noise analyses
has been developed to permit reliable noise characterization of ac-~
tive nonlinear devices. Effects due to sideband correlation in the
equivalent noise source are included. A rotating wave approximation
(RWA) developed by Lax is used in obtaining the amplitude and
phase noise spectra., Conditions are given for phase stabilization of
free-running oscillators and for minimum phase noise in phase-
locked oscillators and amplifiers. Stability criteria, discussion of
spurious sidetones, and effects of a noisy synchronizing signal are
given. The noise measure is used to obtain alternative expressions

for the noise spectra and the carrier-to-noise ratios of locked oscil- .

lators and amplifiers. It is shown that the noise power gain of AM
fluctuations is usually much lower than the corresponding gain for
FM noise. The theory should be useful in optimizing the noise per-
formance of nonlinear RF generators, such as IMPATT, BARITT, and
Gunn diode oscillators.

I. INTRODUCTION
THE NOISE FIGURE is a convenient quantity for

specifying the noise characteristics of linear amplifiers,

since it is uniquely related to the signal-to-noise ratio
(SNR). The situation is more complex in oscillators and large-
signal amplifiers. The inherent nonlinearities in such com-
ponents may cause the signal and noise to transform dif-
ferently. As a result, the SNR can be sensitive to the operating
parameters of the nonlinear system in addition to the strengths
of the noise sources. Thus noise characterization of oscillators
and large-signal amplifiers is a nontrivial problem.

An informative study on noise in free-running and phase-
locked oscillators was presented by Kurokawa [1]. This study
gives detailed results for the spectra of the amplitude and
phase noise (the spectra for the free-running case were
originally derived by Edson [2]), for the possible improve-
ment in FM noise by phase locking, and for the adverse
effects of a noisy synchronizing signal. In addition, Kuro-
kawa's theory describes the asymmetry of the noise spectrum
and an expected increase in the phase noise when the syn-
chronizing frequency in locked oscillators differs from the free-
running frequency. This initial study did not include the fre-
quency dependence of the elements in the equivalent circuit
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and the derivative of the reactance with respect to the level
of operation. These restrictions were removed in a subsequent
analysis [3].

The rotating wave approximation (RWA) employed by
Lax [4] is very effective in permitting a general but simple
formulation of the oscillator noise problem. He derived condi-
tions for decoupling amplitude and phase fluctuations that
give a minimum phase noise. A simple analytic expression
was obtained for the linewidth, even in the case when these
conditions were not met. Important results were given for
amplitude fluctuations.

Advantage will be taken of the RWA method in our deri-
vations to obtain generalized results for locked oscillators and
amplifiers. For completeness, some of the results obtained by
Lax for free-running oscillators will be rederived.

Previous noise analyses have not considered the possi-
bility of correlation between the sidebands of the noise
sources. In Appendix I it will be shown that mixing effects in
nonlinear systems in general will introduce finite correlation
factors. In fact, full sideband correlation has been calculated
for the specific case of an IMPATT diode in large-signal opera-
tion [5]. Therefore, the present analysis has been generalized
to include effects of correlated noise sidebands.

II. CircuiT MODEL

The temporal variation of the RF signal in a well-designed
single-frequency oscillator or amplifier is close to being a pure
sinusoid. Thus the RF circuit current I(f) of instantaneous
amplitude 4 (¢) and phase ¢:(¢) can be written:

I(t) = A() cos [wet + ¢1(8)]
Aot + a(®)] cos [wot + g0 +0(B] (D)

where wo is the signal frequency and A, and ¢y represent the
amplitude and the phase in the noise-free case. In the presence
of noise, slow variations are introduced into the amplitude
and phase, which in (1) are described by the normalized
amplitude fluctuation a(f)=[4()—44]/40 and the phase
fluctuation ¢ () =¢:1(f) — o, respectively.

The nonlinear behavior of oscillators and large-signal
amplifiers in general introduces some higher harmonic content
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into the RF current I(f). This fact can be accounted for by
allowing small amounts of higher harmonics in the amplitude
and phase variations. However, the time integration involved
in deriving the noise spectra around the fundamental fre-
quency wo will effectively eliminate any contribution from the
higher harmonic signals to these spectra. Thus the higher har-
monics can be ignored altogether.

The resulting RF equivalent circuit is shown in Fig. 1. The
noise sources have been lumped into a noise voltage generator
Va. The other voltage source V, represents the input voltage
for an amplifier or the locking signal for a locked oscillator,
and is zero for a free-running oscillator, The impedance Z;
represents a negative-resistance device and is a function of
frequency w and the level of operation through the amplitude
A(#) of the RF current. Finally, Z; is the load impedance pre-
sented by the external circuit, which depends only on the
frequency.

The Fourier transforms of the voltage and current are re-
lated by the circuit equation

V(w) = Vi(w) 4 Valw) = Z(w, 4)I(w) (2)
where the total impedance is given by
Z(w, A) = Za(w, 4) + Zi(w) = Z*(—w, 4).  (3)

The last relationship follows from the reality condition on the
voltage and current in the time domain.

It is expedient for the derivation of the noise spectra to
transform the circuit equation to the time domain

V() = fwdwej“"V(w)
= fﬁodwejwtz(w> A)I(w)

= fwde[—j(d/dt), Ale#tI(w)
= Z[—j(d/dp), A]1(2) 4)
where the impedance operator Z[—7(d/df)]| fulfills
Z[—j(d/dh)]eit = eitZ(c). ()

In particular, we shall need the expansion of the impedance
operator around we and 4,:
Z1—j(d/ i, 4] A(etterron

= et 7 [wy — j(d/dr), A]A(t)eis®

) 0Z(wo, A) d
edwot {Z(wo, Ao) —3 .__M —
awo dl

44A—A@%%%ﬁ¥A@ww ©)

e

0

where a Taylor expansion to the first order was used to obtain
the last equation. It is usually permissible to truncate the
expansion at first order, since it will be assumed that the large-
signal quantities are much larger than the noise amplitudes,
ie., lal and ]¢>| «1. Possible exceptions exist if the impedance
locus versus the frequency contains loops. In this case, the
higher order frequency derivatives of the impedance can be-
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come sufficiently large that higher order terms cannot be
neglected, in spite of the slow time variation of the amplitude
and the phase. However, such operating points are potentially
unstable [3] with possible frequency jumping, parasitic oscil-
lations, and broad-band noise generation, which isinconsistent
with the concept of a well-designed single-frequency oscillator
or amplifier. We shall limit our consideration to well-behaved
impedance functions with a corresponding well-defined operat-
ing point. However, it is interesting to note that Kenyon [6]
has been able to injection lock an oscillator around an im-
pedance loop by using large locking signals. Kurokawa [7] has
given an illuminating theoretical stability discussion for this
case.

It is convenient to introduce the following notation for the
expansion coefficients of the linearized impedance operator
in (6):

Zo = Z(wo, Ao) = Ro +jXo = | Zo| e (7

Za = Ao[0Z(wo, A0)/0A0] = Ra + X4 (8)
Zo+ Za=|Zo+ Zs| e® 9)
L =L+ jL = — (j/2)[8Z(ws, Ao)/dwo] (10)

where Zg is the residual impedance, Z4 gives the amplitude
dependence of the nonlinear negative-resistance device, and L
is the complex inductance. The reactance corresponding to
2L will be written

20L = — jZo = — j(Ru +jX.) = | Z,| ¥ sgn («) (11)

where w here represents a frequency deviation from wo. The
function sgn (w) has the value +1 for ©>0 and —1 for w <0.

By using these definitions and the linear expansion (6), we
can rewrite (4) as

V() = (1/2){ef”°‘ZA (Def#r ) - g~dwatZ* 4 (t)e“f‘i’l(‘)} (12)
where Z is the following linear impedance operator:

Z = 2L(d/dt) + Zo + aZa. (13)

In deriving this result, the impedance has been assumed
to be a function of the instantaneous value of the current. Lax
showed that this adiabatic approximation gives erroneous
results when the power fluctuations of the RF signal are of the
same order of magnitude as the power level [4]. However, the
approximation should be well satisfied when the noise power
is negligible compared to the RF signal level, which is our
case of interest.

III. RoTATING WAVE APPROXIMATION

In general, the source voltage V, can be written

Vo(t) = Vo[l + 2,(8)] cos [wot 4 és(H)]

where 7;(f) and ¢,(#) represent the amplitude and phase fluc-

(19
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tuations in the source signal. By comparing (1) and (14) it
is seen that ¢¢ gives the phase shift between V; and the current
response in the noise-free case. The linearized circuit equation
takes the form

et [Z Aeit — Vo(1 + ,)eits]

+ et [Z* A et — V(1 + v)e %] = 2V,. (15)

In the noise-free case (V,=0), the two terms on the left-
hand side must vanish separately for (15) to be fulfilled at all
times. The noise introduces a weak coupling between the two
terms. Only the time average of this coupling is of importance,
since a time integration is involved in solving the differential
equation (15). This time average is entirely negligible due to
the opposite polarization two represented by the two ex-
ponential factors. Thus it is justified to make an RWA by
multiplying (15) with ¢=#9 and neglecting the second term on
the left-hand side. The result is

[2L(d/dt) + Zo + aZa] Ao(1 + a)ei@ots)

— Vo1 + v)eis = 2V et (16)

Lax previously derived an essentially identical equation for a
free-running oscillator [4, eq. (3.22)], which corresponds to
the special case V=0, Zo=0.

Equation (16) can be simplified by linearizing in the noise
amplitudes, since these are assumed to be much smaller than
the large-signal quantities. As a result, (16) separates into a
steady-state large-signal equation and a small-signal equation
for the noise amplitudes. The large-signal equation is given by

Z()Ao = Z(wo, Ao)Ao = Voe_j¢°. (17)

Comparison with (7) shows that the angle @ can be replaced
by —¢o for amplifiers and locked oscillators. For free-running
oscillators (V,=0), the large-signal amplitude is determined
by Z(we, 4¢) =0. In this case, the phase of (16) can be fixed
by taking ¢o=0.

The noise amplitudes are given by the following complex
equation:

[2L(d/dt) + Zo + Zala(®) +j[2L(a/a) + Zolo()
= Zo[va(®) + j6u(H)] + 2[Va(t)/ AoJemitorew.  (18)

This equation, which was obtained by making an RWA, will
be used next to study the amplitude and phase noise spectra.

1V. SPECTRA OF AMPLITUDE AND PHASE FLUCTUATIONS
A. General Spectra

Equation (18) is easily converted into a set of two coupled
differential equations by equating the real and imaginary
parts separately. It is important to do this separation before
applying a Fourier transformation to obtain a set of linear
equations for the noise amplitudes. The result is
[Ro + R4 +jX. —Xo +ij:| [a(w)]

Xo+ X4 —jR, Ry + jXod Lé(w)

- L

1 1 [ Va(—wo + w)e”"']
A . (19
L | oot B

The Fourier transforms were obtained in the reference frame
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where 4™ is stationary. Therefore, the frequency w repre-
sents the deviation from the operating frequency woe. For
shorthand we shall write V,i=V,(wotw) and use the fact
that V() is real to write Vo(—wotw)=Vo*(wo—w)=T,_*
The following solutions are obtained for the Fourier-trans-
formed noise amplitudes by inverting (19):

a(w) = A7{[] Zo|? + 7 Im (Z*Z)]o — j Re (Z*Z.)9.)
+ (AoA)H{(Zo + Z,)VaFeito
+ (Z* = Z})Vare i)

é(w) = A [Im (ZoZ4*) + j Re (Zo*Z.)]vs
+ [Re [2%(Zo + Za)] + 7 Im (Z5*Z.)]$s}
+ F(AA)H(Zo + Za + Zo)VauFeito
— (Z* + Za* — Z)YVare it}

(20)

(21)

where A is the system determinant of (19) and is given by
A=Re [Z*(Zo+2)]— | Z,|2—F Im [Z2.*(2Z+Z4)]. (22)

From these results we observe that both the voltage and
phase noise of the input signal ¥V, in general couple into the
noise spectra of the current response. It is also seen that
a(w) =0*(—w) and ¢(w)=¢*(—w), which is expected, since
a(t) as well as ¢(¢) are real time functions. An important
implication of these relationships is that the sidebands of both
the amplitude and phase fluctuations are fully correlated, i.e.,
the noise sidebands will add on a voltage rather than a power
basis in double-sideband (DSB) detection. Apparently, this
observation is valid whenever it is permissible to linearize in
the noise amplitudes. Thus full sideband correlation can be
expected even for a small-signal amplifier as long as the signal
level is much higher than the noise level, which is true for
most practical applications.

The noise spectra are found by multiplying (20) and (21)
with their respective complex conjugate expressions. The
spectra close to the operating frequency are of main interest,
ie.,

| Va(oo) |2 =

Moreover, terms of the form (V,..V,y ) arise in calculating the
spectra. These can be expressed in terms of the complex cor-
relation coefficient for the noise voltage (see Appendix I),
which will be written as

[ Vol = Va2 = [ Ve[ (23)

po = p1+jp2 = | po] €7
_ (VaVui) g VoVar)
Hva-lel v 2] [ a2

(24)

This type of correlation arises from nonlinear interactions
in the negative-resistance device as shown in Appendix I.
It should not be confused with the sideband correlations of
the amplitude and phase noise of the circuit current, which
were discussed earlier in this section. A third type of correla-
tion coefficient giving the cross correlation between the ampli-
tude and phase fluctuations {a*¢) is investigated in Appendix
I1. This correlation is simpler to measure than the other side-
band correlations. It can be exploited in experimental noise
studies to yield information about the nonlinear device-
circuit interaction [8], [9].

The noise of the input voltage will be ignored in giving
the general noise spectra to focus attention on the noise re-
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sponse of V,(t). We shall return later to the effects of a noisy
input signal in the discussion of the noise in amplifiers and
locked oscillators.

The results for the general noise spectra are

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, MARCH 1973

R, and Rg are given by
Rl = | Zo|| Zo+ Z4| cos (¢0+6) (30)
Ry = | Zo| cos(po+¥) + | Zo+ Za| cos (9 —¢). (31)

I

ol = 2| Val® | Zo|2 + | Z.|2 + Re [p*e2i0(Z? — Z,2)] 25)
T A {Re[Zi%(Zo + Zo)] — | Z. |2} + {Im [2.2(2Z0 + Z0)]}2
a2 = 2| anz. | Zo + Zal2 + | Z,]2 — Re {p*e2i»[(Z0 + Z4)* — Z.2]} 6

402

These expressions reduce to the corresponding results derived
by Kurokawa [3, eqs. (36) and (37)] for sufficiently high
gains IZo[ <<| ZA| (note that ]Zol —0 as the gain approaches
infinity) and in the limit of vanishing sideband correlation
py=0 for the noise voltage.

B. Resonant Case with Real Inductance

As the expressions (25) and (26) are rather complex, we
shall attempt to gain qualitative information about the noise

{Re [Z*(Zo + Z2)] — | Zo|?}2 + {Im [252Z0 + Zo)]}2

The characteristic frequencies are specified by A=0, i.e.,
jo = [—Rs £ (R — 4R/ 4L].  (32)

The Fourier transform leading to (19) involves the factor
gdut = gort~ait wwhere the subscripts denote the real and imag-
inary parts, respectively. Hence, our solutions are stable,
provided the imaginary parts of the characteristic frequencies
are both positive or zero, which give the stability conditions
R,2>0 and Rg >0. These conditions can be written as

spectra by investigating the special case of resonance Zo= R,, >
assuming a real inductance L(Z,=3X,,) and a reactance being cos (o + 0) 2 0 (33)
independent of the amplitude Z4 = R4. The spectra simplify to cos (o + ¢) + ‘ 14+ Zu 2 i cos(@—¢) >0 (34
2 Vn21+ RZ_‘sz R2+Xw2)
|t = 2Tl 1 plRe = X/(Re 4 X.0) on
Ao (Ro + Ra)* + X.°
21 Va]2 1 = p[((Ro + Ra)? — X.)/((Ro + Ra)? + X.u2)]
| 6(w) |2 = V. : (28)

Ao?

It is interesting to note the rather dramatic effect on the noise
spectra when the real part p; of the correlation coefficient for
the sidebands of the noise voltage approaches either plus or
minus one. In the first case py—1, a strong reduction results in
the phase noise close to the carrier, while the amplitude noise
is increased by approximately a factor of two. The roles are
reversed for p;—>—1. Thus the amplitude and phase noises
cannot be minimized simultaneously by the correlation coeffi-
cient; in most cases there will be a tradeoff such that minimiza-
tion of one spectrum leads to an increase in the other. This
observation is consistent with Convert’s calculations for noise
in avalanche diodes [10]. The low-frequency asymptote for
the amplitude noise spectrum is valid for frequencies w
<(Ro+R4)/L and for w < Ro/L for the phase noise spectrum.
Above these frequencies, the spectra decrease proportionally
to w2 These features are borne out by the Bode plot for the
noise spectra given in Fig. 2. Curves have been plotted for
p1§—0 and demonstrate the effect of the correlation coefficient
of the voltage noise source.

C. Frequency Poles of the Noise Specira

The frequency dependence of the spectra is determined by
the poles and zeros of jw in (25) and (26). The poles are deter-
mined by the characteristic frequencies of the system de-
terminant A, which according to (22) can be written as

A= -Raz - [Zw!2 +ngn (w)RﬂI Zml
= R.? — w?| 2L|% + jwRs| 2L] . (29)
By using (9), (11), and (17), it is found that the resistances

R + X2

which reduce to the results obtained by Kurokawa [3, eq.
(22)] in the limit of high gains (note that Kurokawa’s defini-
tion of # coincides with the present definition when Zy—0).
The equality signs in (33) and (34) correspond to condition-
ally stable cases.

From (29) or (32) it is found that A~! has two different
poles for Rg2>4R,?% while complex conjugate poles result for
Rg? <4R,2. In the latter case, the resonant frequency and the
damping factor are given by wT=Ra/|ZL| and &= Rg/2R,,
respectively. In the underdamped case Rg?<2R,? we get
resonant effects around |Z(,,‘ = R, such that

| Almex = (Ra/Rs)?[1 — (Ra/2R.)?} (35)

for
o = w1 — }(Re/Ro)?]112. (36)

In the conditionally stable cases R,=0 and Rg=0, noise
poles are found at w =0 and w =w,, respectively. [t is seen that
lA[ 2 is rapidly decreasing as we approach the stability limits,
i.e., strong enhancement of the noise spectra occur in mar-
ginally stable cases.

V. FREE-RUNNING OSCILLATORS
A. General Spectra
A phase instability is inherent in free-running oscillators,
since no energy difference is involved in phase fluctuations due
to phase and amplitude variations being in quadrature. This
instability results in phase diffusion, i.e., (]¢| 2ye¢ £, Thus it
may seem inconsistent to linearize in ¢. However, it can be



KUVXSZ NOISE IN OSCILLATORS AND AMPLIFIERS

RE {Rg+ Ry )2
T 0612uL)2w

LOG | 412 N

LOG|a|?

——p>0
—_—— < 0

Fig. 2. Bode plot of amplitude and phase noise spectra versus reactance
with the real part of the sideband correlation coefficient p, for the
voltage noise source as parameter,

argued that since the phase diffusion is a slow process, it will
modify only the long-term stability and have a negligible
effect on the short-term behavior.

Lax avoided a linearization of the phase in his derivation
of noise in free-running oscillators [4] because of the phase
instability. Our result for the phase noise will turn out to be
in agreement with the expression obtained by Lax, which
should substantiate the validity of linearizing in the phase as
far as the short-term stability is concerned.

For a free-running oscillator (Zo=0), the general expres-
sions for amplitude and phase noise simplify to

2| Val* 1+ |pe] cos (2 —x)
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Fig. 3. Bode plot of amplitude and phase noise spectra versus reactance
for free-running oscillator, Rg; corresponds to cos (@—y¥)=1 and
Rga to cos (6—y) <1,

can be reduced simultaneously for | Z,| «|Z4|, when [0] =1
in the special case cos (20~x) = —cos (2¢—x) =1. However,
this case corresponds to 20=yx and ¥ =x-+w, which gives
6—y¢ =m/2 such that Rg= IZAI cos (—y¢)—0. The denomina-
tors of (37) and (38) decrease at the same rate as the nu-
merators for § —y—m/2 resulting in no net advantage in the
noise. It is still possible to achieve separate minimization of
either the amplitude or phase noise at the expense of increas-
ing the other spectrum. The chances to exploit these interest-
ing possibilities for reducing either the amplitude or the phase
noise spectrum may be remote, since the correlation coeffi-

|l =

Aq?

| o] =

| Z,]2 4 | Za|2 cos? (8 — )
2|an2 .IZAIZ"}" lZf.,lz— lp,,l[lZAl2cos(20'— x) + IZ(,,Pcos(Zgb—x)] '

@37

| 2. |40

Interestingly, there is a pole in the phase spectrum for w—0,
which can be ascribed to the phase instability mentioned
above. The corresponding pole for the amplitude spectrum is
canceled by a zero of the numerator for w=0. In terms of the
discussion in Section IV, the pole is due to Ry=0 for Zo=0
corresponding to a conditionally stable case (no restoring
force for phase fluctuations).

B. Phase Stabilization

The noise spectra close to the operating frequency lZwl
KRg= IZA] cos (§—1y) are of particular interest. In this case,
the |Zw] 2 terms of (37) and (38) can be neglected such that
the noise spectra are inversely proportional to cos? (8—).
In this limit, (38) reduces to a result derived by Lax [4, eq.
(6.6) ] for p,=0 by identifying the phase angle of the parame-
ter A in his theory as B=60—y. The noise spectra are mini-
mized for 8—y¥ =0 corresponding to Re [Z4/L]=0, which
was given as a condition for phase stabilization by Lax.

This criterion can be classified equally well as a general
noise stabilization condition for free-running oscillators, as it
is seen by dividing (18) by L that the amplitude and phase
fluctuations are decoupled in this case (note that Z¢=0 for
free-running oscillators). The increase in the noise spectra for

cos (p—¢) <1isillustrated by the Bode plots in Fig. 3.

C. Effect of the Correlation Coefficient p,

It might appear from (37) and (38) that in contrast to the
discussion in Section IV the amplitude and phase noise spectra

| Z,|2+ | Z4|? cos? (6 — ¢)

(38)

cient and the phase angles 6 and ¢ cannot be easily manipu-
lated. Thus such noise reduction would in a practical case be
dependent on fortuitous circumstances rather than on design.

VI. Puase-LockED OSCILLATORS AND AMPLIFIERS
A. Noise Spectra

It is appropriate to consider locked oscillators and ampli-
fiers simultaneously, since they are both characterized by the
total circuit impedance being different from zero, i.e., Zo50.
One difference is that a locked oscillator will have a finite
locking bandwidth due to its intrinsic instability, while an
amplifier is unconditionally stable in the absence of an input
signal.

We are mainly interested in the noise close to the operating
frequency such that Z, can be neglected, since Zop0. The
response of the noise of the input signal shall be included,
which means that the expressions (20) and (21) for the noise
amplitudes must be used to calculate the spectra. Negligible
correlation should exist between the noise of the input signal
and the intrinsic noise of the negative-resistance device.
Under these conditions, (20) and (21) can be squared to give
the following noise spectra for amplifiers and locked oscil-
lators:

| al®

a4 @l VRV A | e cosx)
B ‘ 14 ZsZo? lz cos? (¢ + 6)

(39)
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| 6,12 + tan? (¢o + 6) | v, |2
— 2 tan (¢o + 6) Re (.*¢s)
2| Val2 1= | 0o cos (260 + 20 — x)
Vet cos? (¢o + 0)

These spectra are minimized for ¢o+60="0. Thus the minimum
noise is obtained at midband (Xo=0) only if the device reac-
tance is independent of the large-signal amplitude (X4=0).
The amplitude spectrum arising from the intrinsic noise of
the device is, aside from effects of sideband correlation, re-
duced by the factor [1+ZAA0‘1|—2 compared to the cor-
responding phase noise.

|l =

- (40)

B. Effects of a Noisy Input Signal

The addition to the amplitude noise spectrum due to a
noisy input signal is proportional to !'”s‘ 2, The contribution
from the phase noise can be neglected close to the carrier.
The full phase noise of the input signal will remain in the
amplified signal. In addition, amplitude fluctuations will be
partly converted into phase noise unless ¢o-+68=0, which is
identical to the condition for minimum phase noise when the
input signal is noise free. The cross correlation of the ampli-
tude and phase fluctuations of the input signal {z,%¢;) in (40)
can be determined from (55) in Appendix II.

C. Validity of Spectra

Equations (39) and (40) were obtained by neglectingv] Zw[
so that the denominator is approximated by A = R,? In the
overdamped case (Rg?>2R,?), this approximation is valid
when |Zw| & R,%/Rg, while the corresponding condition in the
undamped case (Rg? <2R,?) is l Z[.,] &R,. The approximations
for the numerators give the additional restriction of IZw|
<<[ Zo[ for the amplitude and IZ(,,I <<| Zo—[—ZAl for the phase
spectrum to be valid. The first two inequalities determine the
frequency range over which the magnitude of the denominator
for a phase-locked oscillator is significantly increased above
the corresponding value for a free-running oscillator—thus
specifying the bandwidth of improved phase noise by injec-
tion locking.

D. Spurious Sidetones

The definitions (30) and (31) for R, and Rg show that a
high gain (Z¢—0) corresponds to the overdamped case. Under-
damping is possible for low-gain amplifiers or injection-locked
oscillators with high locking power, depending on the phase
angles ¢o, 8, and ¢. In Section IV it was pointed out that
strong resonant effects occur at w,=Ra/| 2L| if Rg—0 [see
(35) and (36)]. Thus spurious sidetones can be expected at
wo +w, in this limit,

As mentioned in Section 11, Kenyon [6] has shown experi-
mentally that phase locking is possible around loops in the
impedance locus with high locking powers. Spurious side-
tones were observed in such locking. Since large variations of
the phase angles are expected in this case, it appears likely
that the sidebands are due to Rs <0 in part of the impedance
loop.

E. Comparison of Free-Running and Phase-Locked Oscillator

A comparison of the noise spectra of a free-running and
phase-locked oscillator is shown in Fig. 4 for the special case
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Fig. 4. Comparison of Bode plots of amplitude and phase noise spectra
versus reactance for free-running and phase-locked oscillators. Rg
gives the residual circuit resistance for a higher input power than Rga.
Note that the phase spectrum for a phase-locked oscillator is deter-
mined by the phase noise of the locking source close to the operating
frequency.

py=0, Zo=Ro, Z4= R4, and Z,=3X,. No spurious sidebands
are expected, since Rg?=4R,*4 R4% Results are shown for
two different levels of the locking signal with Piock, 1 <Pioek, 2
It is assumed that changes in the ratio | Vn] 2/ A can be ig-
nored. The phase noise of the locking signal dominates ld)l Z1ock
close to the operating frequency. A significantimprovement in
the phase spectrum is achieved for w <Ro/2L by phase lock-
ing. The amplitude spectrum is reduced by a factor 1R/ R4
through injection locking.

VII. Noise MEASURE
Adler and Haus [12] introduced the noise measure

M=(F -1/ -6 (41)

as a more meaningful quantity than the noise figure F [11]
to characterize the noise of linear amplifiers. The quantity
G=P,/P;is the gain of the carrier power with P, and P; being
the output and input powers, respectively. From (39) and
(40) it is found that the corresponding noise power gain
Gn,= N,/ N;is given by

GAY = G/l 1+ ZAZ5t 12 cos? (¢o + 0)
GnFM =G

(42)
(43)

for AM and FM noise, respectively. Thus the AM noise gain
will in most cases be substantially lower than the carrier
power gain. This low gain is indicative of a correspondingly
small amplification for sidebands of an AM signal, so that the
low gain cannot be expected to improve the AM SNR.

An expression relating the input voltage amplitude ¥V, to
the input power P;is needed in calculating the noise measure.
From the equivalent circuit in Fig. 1 it is found that

Vet = 8| Ri| Pi/(1 — G (44)

where Ryj=Re (Z3) gives the equivalent negative resistance
of the active device. The noise figures are obtained by using
the noise spectra (39) and (40) and assuming an input noise
power of kT corresponding to the standard temperature
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290K within the bandwidth B. The thermal noise at the input
is white such that the noise power is shared equally between
AM and FM fluctuations. The corresponding noise measures
are found by using (41):

| Va2 + | o] cosx)

May = 45
. 4%ToB| R, | 9
Va2t = | po 20 + 20 — X,
sy = 1P L] cos Ot 20-20]

4kToB| Ry| cos? (¢o -+ 6)

These expressions are natural extensions of the noise measure
introduced by Haus and Adler [12] to large-signal amplifiers
and locked oscillators. The results describe the noise power
added by the intrinsic noise of the device and are independent
of the power gain. One additional complication as compared to
the linear case is introduced by the correlation coefficient p,.
However, it can be interpreted to be an integral part of the
intrinsic noise properties. In addition, the phase noise can be
enhanced by device-circuit interactions through the factor
1/cos? (¢o+86).

Itis interesting to compare (45) and (46) to the optimum
noise measure derived by DeLoach [13] for negative-con-
ductance amplifiers. He found that

Mop, = | Va|2/4RToB| Ry (47)

which is identical to May in the limit p,=0 and to My in
the limit p, =0 and ¢o4+6=0.

It has been established that the noise measure represents
a meaningful quantity to characterize the noisiness of active
devices. Experimentally, this parameter can be determined
by measuring the carrier-to-noise ratio (P/N):

— 1] / (1—G7) (48

assuming that the input noise is well described by T For
DSB detection, the correlation between the sidebands a(w),
a(—w), and ¢(w), ¢(—w) must be taken into account:

(N/P)pss = 2(1 + | pa,g| Y(V/P)sss.

2P;
w-|
kTOB(Po/No)SSB

(49)

The factor of 2 results from using only the single-sideband
(SSB) bandwidth B. It was pointed out in Section IV that
Pa,s=1 for all practical purposes (P>»N), since then ¢(w)
=g*(—w) and ¢(w) =¢*(—w). Thus the noise sidebands will
add on a voltage rather than a power basis such that (N/P)pgs
=4(N/P)ssg.

VIII. SuMMARY AND CONCLUSIONS

The amplitude and phase noise spectra of adiabatic single-
frequency oscillators and amplifiers have been studied. An
RWA was employed in deriving a linearized operator equa-
tion for the noise amplitudes. General expressions were ob-
tained for the amplitude and phase noise spectra by Fourier
transformation of this operator equation. Special considera-
tion was given to effects due to sideband correlation in the
equivalent noise source. The sideband and cross correlation
of the amplitude and phase noises were discussed as well. It
was pointed out that full sideband correlation is expected for
the amplitude and phase noises of well-designed oscillators and
amplifiers.
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The correlation coefficient p, of sidebands of the noise
source had rather dramatic effects on the noise spectra in the
limits Re (p,) =p;— +1. A sharp reduction of the amplitude
noise close to the operating frequency results for p;— —1 with
a corresponding increase in the phase noise, while the roles are
reversed for pi—1.

The system determinant involved in solving for the noise
spectra determines the noise poles and the stability conditions.
Resonant effects, i.e., enhancement of the noise spectra, occur
at w=0 when R,—0 and at w=w,=R,,,/| ZLI for Rg/R,—0;
see (29)—(36). The onset of these resonances define the sta-
bility limits.

The case R,=0 is typical of free-running oscillators and
gives rise to a phase instability. The corresponding pole for the
amplitude spectrum is canceled by a zero of the numerator.
The instability results from no energy difference being in-
volved in phase fluctuations and causes phase diffusion. It was
established that the phase noise of a free-running oscillator
is minimized for Re [Z4/Z,]=0, which was characterized as
“phase stabilization” by Lax [4]. Thus the oscillator is phase
stable if simultaneously the circuit resistance is independent
of frequency and the reactance is independent of the operating
level. Otherwise, the phase noise will be enhanced by the factor
1/cos? (0—¢) = l ZA/ZwI 2/[Im (Z4/Z,)]2 in the vicinity of the
operating frequency.

Phase-locked oscillators and amplifiers are both charac-
terized by the residual circuit impedance. Detailed expres-
sions were derived for the noise spectra including the effects
of a noisy input signal. The magnitude of the noise spectra
was minimized when the residual total impedance and the
amplitude sensitivity of the impedance combine to give
¢o+0=0. This condition is fulfilled at midband (X,=0) when
the reactance is independent of the large-signal current ampli-
tude.

The addition to the amplitude noise spectrum caused by a
noisy input signal is proportional to the amplitude noise of
this signal. This amplitude noise will partly convert into
phase fluctuations for ¢o+6070. The full phase noise of the
locking signal will remain in the amplified signal.

Spurious sidetones can be expected at wo+tw, for locked
oscillators and amplifiers when Rg—0. This type of instability
might well explain experimental findings by Kenyon [6] that
sidetones are generated when locking around loops in the
impedance locus.

In characterization of device noise it is convenient to quan-
tify the spectra in terms of the noise figure or noise measure.
The latter quantity gives a better representation of the in-
trinsic noise of the active device. The noise power gains of
AM and FM fluctuations are in general different. In most
cases, the AM noise gain is considerably lower. However, both
the noise measures reduce to the optimum result derived by
DeLoach [13] in the limit p,=0 and ¢o-+8=0. For o850,
the FM noise measure is enhanced by the factor 1/cos? (¢o+86).
Finally, it was pointed out that the noise measure can be de-
termined by experimentally measuring the carrier-to-noise
ratio.

The generality of the analysis enabled us to reproduce
some of Lax’s results for free-running oscillators [4] and to
generalize Kurokawa's results for high-gain locked oscillators
[3] to take into account finite gains and correlation effects.
Our results are valid for any value of the locking gain, and can
also be used for large-signal amplifiers. It is concluded that the
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theory should be useful in characterizing and optimizing the
noise performance of active nonlinear devices (e.g., IMPATT,
BARITT, and Gunn diodes).

APPENDIX [
CORRELATION COEFFICIENT FOR SIDEBANDS
oF NoisE VOLTAGE SOURCE

The primary noise F(£) is assumed to be random and have
a white noise spectrum. In a nonlinear system, the resulting
open-circuit noise voltage will be related to the primary noise
through a Fourier expansion:

Valwo + @) = D, CaF(mwy -+ )

M=

(50)

where Ci, are the coupling coefficients resulting from the non-
linearities. The sideband correlation is determined by the
product

Valwo — @) Vialwo + w)
= 2, > CinCuF(mwy — w)F(kwy + «)
m ok

= 3. Y CromCucF*(moso + ) F(kwy + w).  (51)
m ok

By using the fact that F(#) has a white noise spectrum and
taking the statistical averages in (51), we find

(VaVus) = | F|2 25 CrnCin

M=

(52)

where V,1= V,(wotw). The autocorrelation function at wo is
given by
| Valwo) |2 = | P2

Z Clmclm*- (53)

o
Now the correlation coefficient for the sidebands of the
noise voltage source can be found from (52) and (53):

-]

2 — 80m)C1mC1,—m
Fuvey 5 CC

= Vnw[) 2— o)
l ( )l 2(2"‘3012)IC117‘2

Do (54)

where we have used the condition V{w¢+w)=V*(—wi—w).
Thus although the primary noise is white, the equivalent
voltage noise source of a nonlinear device will in general have
finite sideband correlations.
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ArpENDIX II

CRross-CORRELATION COEFFICIENT FOR
AMPLITUDE AND PHASE FLUCTUATIONS

Experimentally, the cross correlation between the ampli-
tude and phase noise is relatively simple to measure. Thus this
quantity is important in experimental noise studies [8], [9].
A theoretical expression can be derived from (20) and (21).
By ignoring the noise of the input signal, the following expres-
sion is found for the cross spectrum:

(a*¢)=M [Tm {ZOZA*—pv*eZi“[Zo(Zo-I—ZA) _sz]}
A2l Al
+ 7 Re [Z,*(2Zo+Z4) — p,* et Z,Z4]].  (55)
The cross-correlation coefficient is defined by
pus = (@*¢)/[| al?] o |]12 (56)

and thus, it is fully determined by (55), (25), and (26). Equa-
tion (55) shows that the cross-correlation coefficient in gen-
eral will be complex. The imaginary part can be measured

" experimentally by introducing a relative phase shift of 90°

between the amplitude and phase noise components, as was
pointed out by Hashiguchi and Okoshi [9].
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