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Noise in Single-Frequlency Oscillators and Amplifiers

REIDAR L. KUV~S

AfMract-A generalization of previous oscillator noise analyses
has been developed to permit reliable noise characterization of ac-
tive nonlinear devices. Effects due to sideband correlation in the
equivalent noise source are included. A rotating wave approximation
(RWA) developed by Lax is used in obtaining the amplitude and
phase noise spectra. Conditions are given for phase stabilization of
free-running oscillators and for minimum phase noise in phase-
Iocked oscillators and amplifiers. Stability criteria, discussion of
spurious sidetones, and effects of a noisy synchronizing signal are
given. The noise measure is used to obtain alternative expressions
for the noise spectra and the carrier-to-noise ratios of locked oscil-
lators and amplifiers. It is shown that the noise power gain of AM
fluctuations is usually much lower than the corresponding gain for
FM noise. The theory should be useful in optfiizing the noise per-
formance of nonlinear RF generators, such as IMPATT, BARITT, and
Gunn diode oscillators.

1. INTRODUCTION

T
HE NOISE FIGURE is a convenient quantity for

specifying the noise characteristics of linear amplifiers,

since it is uniquely related to the signal-to-noise ratio

(SNR). The situation is more complex in oscillators and large-

signal amplifiers. The inherent nonlinearities in such com-

ponents may cause the signal and noise to transform dif-

ferently. As a result, the SNR can be sensitive to the c)perating

parameters of the nonlinear system in addition to the strengths

of the noise sources. Thus noise characterization of oscillators

and large-signal amplifiers is a nontrivial problem.

An informative study on noise in free-running and phase-

locked oscillators was presented by Kurokawa [1]. This study

gives detailed results for the spectra of the amplitude and

phase noise (the spectra for the free-running case were

originally derived by Edson [2]), for the possible improve-

ment in FM noise by phase locking, and for the adverse

effects of a noisy synchronizing signal. In addition, Kuro-

kawa’s theory describes the asymmetry of the noise spectrum

and an expected increase in the phase noise when the syn-

chronizing frequency in locked oscillators difi-ers from the free-

running frequency. This initial study did not include the fre-

quency dependence of the elements in the equivalent circuit
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and the derivative of the reactance with respect to the level

of operation. These restrictions were removed in a subsequent

analysis [3].

The rotating wave approximation (RWA) employed by

Lax [4] is very effective in permitting a general but simple

formulation of the oscillator noise problem. He derived condi-

tions for decoupling amplitude and phase fluctuations that

give a minimum phase noise. A simple analytic expression

was obtained for the linewidth, even in the case when these

conditions were not met. Important results were given for

amplitude fluctuations.

Advantage will be taken of the RWA method in our deri-

vations to obtain generalized results for locked oscillators and

amplifiers. For completeness, some of the results obtained by

Lax for free-running oscillators will be rederived.

Previous noise analyses have not considered the possi-

bility of correlation between the sidebands of the noise

sources. In Appendix I it will be shown that mixing effects in

nonlinear systems in general will introduce finite correlation

factors. In fact, full sideband correlation has been calculated

for the specific case of an IMPATT diode in large-signal opera-

tion [5]. Therefore, the present analysis has been generalized

to include effects of correlated noise sidebands.

II. CIRCUIT MODEL

The temporal variation of the RF signal in a well-designed

single-frequency oscillator or amplifier is close to being a pure

sinusoid. Thus the RF circuit current l(t) of instantaneous

amplitude /i (t) and phase @Ii(t) can be written:

l(t) = A (t) Cos [C@+ +,(t)]

= ~0[1 + a(t)] cos [c@+ @I + #s(t)] (1)

where coois the signal frequency and A o and @Orepresent the

amplitude and the phase in the noise-free case. In the presence

of noise, slow variations are introduced into the amplitude

and phase, which in (1) are described by the normalized

amplitude fluctuation a(t) = [A (t) —A 0]/A o and the phase

fluctuation ~(t) =@I(t) –q50, respectively.

The nonlinear behavior of oscillators and large-signal

amplifiers in general introduces some higher harmonic content
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into the RF current I(t). This fact can be accounted for by

allowing small amounts of higher harmonics in the amplitude

and phase variations. However, the time integration involved

in deriving the noise spectra around the fundamental fre-

quency UOwill effectively eliminate any contribution from the

higher harmonic signals to these spectra. Thus the higher har-

monics can be ignored altogether.

The resulting RF equivalent circuit is shown in Fig. 1. The

noise sources have been lumped into a noise voltage generator

V.. The other voltage source V. represents the input voltage

for an amplifier or the locking signal for a locked oscillator,

and is zero for a free-running oscillator. The impedance i?d

represents a negative-resistance device and is a function of

frequency a and the level of operation through the amplitude

A (t) of the RF current. Finally, 21 is the load impedance pre-

sented by the external circuit, which depends only cm the

frequency.

The Fourier transforms of the voltage and current are re-

lated by the circuit equation

v(u) = v,(u) + v.(w) = 2(% ~)~(~) (2)

where the total impedance is given by

Z(CO,A) = Zd(co,A) + ZZ(6J)= 2*(–U, A). (3)

The last relationship follows from the reality condition on the

voltage and current in the time domain.

It is expedient for the derivation of the noise spectra to

transform the circuit equation to the time domain

sw

. &oZ[–j(d/dt), A ]e~”t~(a)

= zi:j(d/dt), A]I(t) (4)

where the impedance operator Z [—j(d/dt) ] fulfills

Z[–j(d/dt)]ef”t = eJwtZ(co). (5)

In particular, we shall need the expansion of the impedance

operator around UO and A ~:

Z[—j(d/dt), A]A (t)e~[tiot+~(t)l

{

dz(coo, i40) d
= e~”ot Z(tio, Ao) —j

13(lk) %

az(q, A ())
+ (A – Ao)

t)Ao )
A(t)e’+(’) (6)

where a Taylor expansion to the first order was used to obtain

the last equation. It is usually permissible to truncate the

expansion at first order, since it will be assumed that the large-

signal quantities are much larger than the noise amplitudes,

i.e., I a I and I @I <<1. Possible exceptions exist if the impedance

10CUS versus the frequency contains loops. In this case, the

higher order frequency derivatives of the impedance can be-
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Fig. 1. Equivalent circuit of single-frequency oscillator or amplifier.

come sufficiently large that higher order terms cannot be

neglected, in spite of the slow time variation of the amplitude

and the phase. However, such operating points are potentially

unstable [3] with possible frequency jumping, parasitic oscil-

lations, and broad-band noise generation, which is inconsistent

with the concept of a well-designed single-frequency oscillator

or amplifier. We shall limit our consideration to well-behaved

impedance functions with a corresponding well-defined operat-

ing point. However, it is interesting to note that Kenyon [6]

has been able to injection lock an oscillator around an im-

pedance loop by using large locking signals. Kurokawa [7] has

given an illuminating theoretical stability discussion for this

case.

It is convenient to introduce the following notation for the

expansion coefficients of the linearized impedance operator

in (6) :

20 = Z(tiO, Ao) = RO +jXO = I ZO] ej” (7)

Z~ = Ao[c3Z(ti0, Ao)/13Ao] = RA + jXA (8)

zo+zd=\zo+zAleio (9)

L = LI + ~Lz = – (~/2) [~z(uo> Ao)/~@o] (10)

where ZO is the residual impedance, 2A gives the amplitude

dependence of the nonlinear negative-resistance device, and L

is the complex inductance. The reactance corresponding to

2L will be written

2uL = – jZO = – j(l?ti + jXU) = I 20\ e~$ sgn (co) (11)

where co here represents a frequency deviation from coo. The

function sgn (co) has the value + 1 for co>O and – 1 for a <O.

By using these definitions and the linear expansion (6), we

can rewrite (4) as

V(t) = (1/2){ e~Wo~~A(t)e~~’ @J+ e–~Oot~*A (t)e–~$1(f) ] (12)

where Z is the following linear impedance operator:

~ = 2L(d/dt) + 20 + (zZ~. (13)

In deriving this result, the impedance has been assumed

to be a function of the instantaneous value of the current. Lax

showed that this adiabatic approximation gives erroneous

results when the power fluctuations of the RF signal are of the

same order of magnitude as the power level [4]. However, the

approximation should be well satisfied when the noise power

is negligible compared to the RF signal level, which is our

case of interest.

II 1. ROTATING WAVE APPROXIMATION

In general, the source voltage 1’. can be written

v.(t) = Vo[l + v,(t)] cm [@et+ +s(0] (14)

where o,(t) and ~,(t) represent the amplitude and phase fluc-
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tuations in the source signal. By comparing (1) and (14) it

is seen that @Ogives the phase shift between V* and the current

response in the noise-free case. The linearized circuit equation

takes the form

+ e-~”0’[2*Ae-~@’ – VO(l + v.)e-~~e] = 2V.. (15)

In the noise-free case (V. = O), the two terms orI the left-

hand side must vanish separately for (15) to be fulfilled at all

times. The noise introduces a weak coupling between the two

terms. Only the time average of this coupling is of importance,

since a time integration is involved in solving the differential

equation (15). This time average is entirely negligible due to

the opposite polarization ftio represented by the two ex-

ponential factors. Thus it is justified to make an RWA by

multiplying (15) with e–~@O~and neglecting the second term on

the left-hand side. The result is

Lax previously derived an essentially identical equation for a

free-running oscillator [4, eq. (3.22)], which corresponds to

the special case VO= O, ZO = 0.

Eqiiiation (16) can be simplified by linearizing in the noise

amplitudes, since these are assumed to be much smaller than

the large-signal quantities. As a result, (16) separates into a

steady-state large-signal equation and a small-signal equation

for the noise amplitudes. The large-signal equation is given by

ZOA o = Z(WO, A o)A o = Voe–~~o. (17)

Comparison with (7) shows that the angle a can be replaced

by –d. for amplifiers and locked oscillators. For free-running

oscillators ( VO= O), the large-signal amplitude is determined

by Z(UO, Ao) = O. In this case, the phase of (16) can be fixed

by taking qio= O.

The noise amplitudes are given by the following complex

equation:

[2L(d/dt) +20+ ZA]a(t) +j[2L(d/dt) + ZO]@(t)

. 20 [v.(t) + j~.(t) ] + 2 [vn(t)/A o] e–~ttio~+$o). (18)

This equation, which was obtained by making an RWA, will

be used next to study the amplitude and phase noise spectra.

IV. SPECTRA OF AMPLITUDE AND PHASE FLUCTUATIONS

A. General Spectra

Equation (18) is easily converted into a set of two coupled

differential equations by equating the real and imaginary

parts separately. It is important to do this separation before

applying a Fourier transformation to obtain a set of linear

equations for the noise amplitudes. The result is

[

R. + R~ +jX@ –Xo+jR.

1[ 1a(~),XO+.X*–jRW R.+ jX@ +(u)

1 1 V.( – coo + u)ei@O-
+ Ao-l

[ 1[ 1. (19)

j –j V.(OJO + co)e-~+’ .

The Fourier transforms were obtained in the reference frame

where A oej”o~ is stationary. Therefore, the frequency u repre-

sents the deviation from the operating frequency 00. For

shorthand we shall write ~n~ = ~n(tio *CO) and use the fact

that ~(t) is real to write ~n(–wo+~) = lJW*(UO-O) = ~m_*.

The following solutions are obtained for the Fourier-trans-

formed noise amplitudes by inverting (19):

a(co) = A–l{ [ I 20 \2 + j Im (ZO*ZU)]ZI. – j Re (ZO*Zo)r#Js}

+ (A OA)–l { (Z. + 2.) Vn-*e~~O

+ (20” – Z.*) Vn+e-~~O} (20)

c#I(ti) = A-’{ [Im (ZoZ~*) + j Re (ZO*ZU)]V,

+ [Re [ZO*(ZO + z~)] + j Im (ZO*ZW)]O.)

+ ~(AoA)-l{ (2o + Z~ + z@)V.-*e~@O

– (ZO* + Z~* – Z@*) Vn+e-J$O} (21)

where A is the system determinant of (19) and is given by

A= Re [ZO*(ZO+ZJ] – I Zu I ‘–j Im [Z@*(2ZO+Z~)]. (22)

From these results we observe that both the voltage and

phase noise of the input signal l’s in general couple into the

noise spectra of the current response. It is also seen that

a(a) = a*(—o) and ~(u) = #*( —u), which is expected, since

a(t) as well as c)(t) are real time functions. An important

implication of these relationships is that the sidebands of both

the amplitude and phase fluctuations are fully correlated, i.e.,

the noise sidebands will add on a voltage rather than a power

basis in double-sideband (DSB) detection. Apparently, this

observation is valid whenever it is permissible to linearize in

the noise amplitudes. Thus full sideband correlation can be

expected even for a small-signal amplifier as long as the signal

level is much higher than the noise level, which is true for

most practical applications.

The noise spectra are found by multiplying (20) and (21)

with their respective complex conjugate expressions. The

spectra close to the operating frequency are of main interest,

i.e.,

I Vn(uO)12 = I l’nl’ = I Vn_]2 = I V.+l’. (23)

Moreover, terms of the form ( Vn__l’ti) arise in calculating the

spectra. These can be expressed in terms of the complex cor-

relation coefficient for the noise voltage (see Appendix I),

which will be written as

P. =P1+jP2 = lp.leix

(V.-v.+) ~ (v._vn+).
[1Vn-]’l Vn+l’]ll’ Ivn\’ .

(24)

This type of correlation arises from nonlinear interactions

in the negative-resistance device as shown in Appendix 1.

It should not be confused with the sideband correlations of

the amplitude and phase noise of the circuit current, which

were discussed earlier in this section. A third type of correla-

tion coefficient giving the cross correlation between the ampli-

tude and phase fluctuations (a*@) is investigated in Appendix

II. This correlation is simpler to measure than the other side-

band correlations. It can be exploited in experimental noise

studies to yield information about the nonlinear device--

circuit interaction [8], [9].

The noise of the input voltage will be ignored in giving

the general noise spectra to focus attention on the noise re-
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sponseof Vn(t). We shall return later tothe effects of a noisy Ruand R6 are given by

input signal in the discussion of the noise in amplifiers and
R.’= \ZollZo+Z~l COS(@o+@ (30)

locked oscillators.

The results for the general noise spectra are 126= 12,1 COS(@O+ ~)+ IZO+.ZAI cos(o– t). (31)

Ial’=
2[vnl’ \ ZO1’ + I Z. 1’ + Re [p~*e2’@O(Z/– z.’)]

AO’ “ {Re [ZO*(ZO + z~)] - \ Zti12}’ + {Im [Z~*(2Z0 + z~)]]’
(25)

,412= 21 VW12.1ZO+-Z~12+ IZ.12 - Re{p~*e2’”0[(Z0 +Z~)2 -z’]}

A02 {Re [ZO*(ZO + z~)] - I Z~12]2 + {lm [Z.*(2Z0 + zj)]]’ “
(26)

These expressions reduce to the corresponding results derived

by Kurokawa [3, eqs. (36) and (37)] for sufficiently high

gains 12.1 <<12A I (note that \ 2.1+0 as the gain approaches

infinity) and in the limit of vanishing sideband correlation

PV= O for the noise voltage.

B. Resonant Case with Real Inductance

As the expressions (25) and (26) are rather complex, we

shall attempt to gain qualitative information about the noise

spectra by investigating the special case of resonance ZO = Ro,

assuming a real inductance L(Z. =jXo) and a reactance being

independent of the amplitude 2A = RA. The spectra simplify to

The characteristic frequencies are specified by A = O, i.e.,

@ = [–Rp + (R62 – 4R.2)’12]/ I 4Ll . (32)

The Fourier transform leading to (19) involves the factor
e~ti~= ei~d-.d, where the subscripts denote the real and imag’

inary parts, respectively. Hence, our solutions are stable,

provided the imaginary parts of the characteristic frequencies

are both positive or zero, which give the stability conditions

R.z >0 and Rb >0. These conditions can be written as—

Cos (+0 + e) 20 (33)

COS (+o + ~) + I 1 + zAzO–l I COS (0 – +) >0 (34)

[ a(u) lZ = 2I ‘~ 1’.1+ PI[(R02 - xm2)/(Ro’ + X@Z)]
A o’ (Ro + RA)2 + x(o’

(27)

14@)l’=
2 \ V. 1’ 1 – pI[((Ro + RA)2 – x~2)/((Ro + RA)2 + X02)] .. . -“--- .

A o’
(28)

It is interesting to note the rather dramatic effect on the noise

spectra when the real part PI of the correlation coefficient for

the sidebands of the noise voltage approaches either plus or

minus one. In the first case PI+l, a strong reduction results in

the phase noise close to the carrier, while the amplitude noise

is increased by approximately a factor of two. The roles are

reversed for p]+ — 1. Thus the amplitude and phase noises

cannot be minimized simultaneously by the correlation coeffi-

cient; in most cases there will be a tradeoff such that minimiza-

tion of one spectrum leads to an increase in the other. This

observation is consistent with Convert’s calculations for noise

in avalanche diodes [IO]. The low-frequency asymptote for

the amplitude noise spectrum is valid for frequencies co

< (Ro+RA)/L and for co< Ro/L for the phase noise spectrum.

Above these frequencies, the spectra decrease proportionally

to U–2. These features are borne out by the Bode plot for the

noise spectra given in Fig. 2. Curves have been plotted for

PI$O and demonstrate the effect of the correlation coefficient

of the voltage noise source.

C. Frequency Poles of the Noise Spectra

The frequency dependence of the spectra is determined by

the poles and zeros of ja in (25) and (26). The poles are deter-

mined by the characteristic frequencies of the system de-

terminant A, which according to (22) can be written as

A = Ra2 – [Zti\2 +jsgn (co)RP\ zml

=Ra’–u212L 12+juRO12Ll. (29)

By using (9), (11), and (17), it is found that the resistances

which reduce to the results obtained by Kurokawa [3, eq.

(22) ] in the limit of high gains (note that Kurokawa’s defini-

tion of O coincides with the present definition when ZO+O).

The equality signs in (33) and (34) correspond to condition-

ally stable cases.

From (29) or (32) it is found that A–l has two different

poles for R@’ > 4Ra2, while complex conjugate poles result for

Rfig <4R.’. In the latter case, the resonant frequency and the

damping factor are given by a,= RJ 12L I and ~= Rb/2Re,

respectively. In the underdamped case R62 < 2Ra2, we get

resonant effects around I Z@\ = R. such that

I A l;~x = (R@/R6)’[1 – (RP/2R.)’]-’ (35)

for

w = w,[l — +(Rp/R.)’]11’. (36)

In the conditionally stable cases R.= O and R@= O, noise

poles are found at w = O and co= w,, respectively. It is seen that

[Al 2 is rapidly decreasing as we approach the stability limits,

i.e., strong enhancement of the noise spectra occur in mar-

ginally stable cases.

V. FREE-RUNNING OSCILLATORS

A. General Sfiectra

A phase instability is inherent in free-running oscillators,

since no energy difference is involved in phase fluctuations due

to phase and amplitude variations being in quadrature. This

instability results in phase diffusion, i.e., (\@12)~t.Thus it

may seem inconsistent to linearize in O. However, it can be
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Fig. 2. Bode plot of amplitude and phase noise spectra versus reactance Fig. 3. Bode plot of amplitude and phase noise spectra versus reactance
with the real Part of the sideband correlation coefficient PV for the for free-running oscillator. RFI corresponds to cos (6 – ~) = 1 and
voltage noise source as parameter. R8s to COS@-fi) <1.

argued that since the phase diffusion is a slow process, it will

modify only the long-term stability and have a negligible

effect on the short-term behavior.

Lax avoided a linearization of the phase in his derivation

of noise in free-running oscillators [4] because of the phase

instability. Our result for the phase noise will turn out to be

in agreement with the expression obtained by Lax, which

should substantiate the validity of linearizing in the phase as

far as the short-term stability is concerned.

For a free-running oscillator (ZO = O), the general expres-

sions for amplitude and phase noise simplify to

can be reduced simultaneously for \ Zo ] <<I Z~ ] , when ]PV] +1

in the special case cos (20 —x) = — cos (2~—~) = 1. However,

this case corresponds to 26=X and ~ = x+r, which gives

13-+= T/2 such that Rd = \ Z~ I cos (0–~)+0. The denomina-

tors of (37) and (38) decrease at the same rate as the nu-

merators for 19-4L--xr/2 resulting in no net advantage in the

noise. It is still possible to achieve separate minimization of

either the amplitude or phase noise at the expense of increas-

ing the other spectrum. The chances to exploit these interest-

ing possibilities for reducing either the amplitude or the phase

noise spectrum may be remote, since the correlation coeffi-

,a,2_ zl~~lz l+] P. ICO!3(21J -X)
—

M i 2.[2+ j z~l’,:o,’(e–~)
(37)

1+12=
2]vn/’ IzA\’+ /2,./’– lp, [[]z41’cos(2e’– x)+ /z@1’cos(21j -x)]

I Z~12A02 “ 12.]’+ /zA\2cos’ (e-*)
(38)

Interestingly, there is a pole in the phase spectrum for u~O,

which can be ascribed to the phase instability mentioned

above. The corresponding pole for the amplitude spectrum is

canceled by a zero of the numerator for co= O. In terms of the

discussion in Section IV, the pole is due to R.= O for ZO = O

corresponding to a conditionally stable case (no restoring

force for phase fluctuations).

B. Phase Stabilization

The noise spectra close to the operating frequency I Zti I

<<RB = I Z~ ] cos (0—+) are of particular interest. In this case,

the I Zo 12 terms of (37) and (38) can be neglected such that

the noise spectra are inversely proportional to cm’ (O–x).

In this limit, (38) reduces to a result derived by Lax [4, eq.

(6.6) ] for pa = O by identifying the phase angle of the parame-

ter A in his theory as f?= O—~. The noise spectra are mini-

mized for O—~ = O corresponding to Re [ZA/L] ==O, which

was given as a condition for phase stabilization by Lax.

This criterion can be classified equally well as a general

noise stabilization condition for free-running oscillators, as it

is seen by dividing (18) by L that the amplitude and phase

fluctuations are decoupled in this case (note that ZO = O for

free-running oscillators). The increase in the noise spectra for

cos (#1—+) <1 is illustrated by the Bode plots in Fig. 3.

C. Effect of the Cowelation C’oejikient p,

It might appear from (37) and (38) that in contrast to the

discussion in Section IV the amplitude and phase no;se spectra

cient and the phase angles O and ~ cannot be easily manipu-

lated. Thus such noise reduction would in a practical case be

dependent on fortuitous circumstances rather than on design.

VI. PHASE-LOCKED OSCILLATORS AND AMPLIFIERS

A. Noise Spectra

It is appropriate to consider locked oscillators and ampli-

fiers simultaneously, since they are both characterized by the

total circuit impedance being different from zero, i.e., ZO# O.

One difference is that a locked oscillator will have a tinite

locking bandwidth due to its intrinsic instability, while an

amplifier is unconditionally stable in the absence of an input

signal.

We are mainly interested in the noise close to the operating

frequency such that Zti can be neglected, since ZO#O. The

response of the noise of the input signal shall be included,

which means that the expressions (20) and (21) for the noise

amplitudes must be used to calculate the spectra. Negligible

correlation should exist between the noise of the input signal

and the intrinsic noise of the negative-resistance device.

Under these conditions, (20) and (21) can be squared to give

the following noise spectra for amplifiers and locked oscil-

lators:

, a,’= lfl.12+ (’21 ~nl’/vo’)(l+ Ipvl Cosx)

\ 1 + i?.4z0-’ IZ COS2 (40 + O)
(39)
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1412= \@$\2+tan2(@0+O)lv,\2
—2 tan (@o + 0) Re (v.*@.)

2\vnl’ 1- Ip.1 COS(240+20– X)
+ . (40)

VI)’ “ Cos’ (q% + e)

These spectra are minimized for @o+ O= O. Thus the minimum

noise is obtained at midband (XO = O) only if the device reac-

tance is independent of the large-signal amplitude (XA = O).

The amplitude spectrum arising from the intrinsic noise of

the device is, aside from effects of sideband correlation, re-

duced by the factor I l+ZAA 0–1\‘2 compared to the cor-

responding phase noise.

B. Effects of a Noisy Input Signal

The addition to the amplitude noise spectrum due to a

noisy input signal is proportional to \ V*I ‘. The contribution

from the phase noise can be neglected close to the carrier.

The full phase noise of the input signal will remain in the

amplified signal. In addition, amplitude fluctuations will be

partly converted into phase noise unless @o+ @=0, which is

identical to the condition for minimum phase noise when the

input signal is noise free. The cross correlation of the ampli-

tude and phase fluctuations of the input signal (v.*+,) in (40)

can be determined from (55) in Appendix II.

C. Validity of Spectra

Equations (39) and (40) were obtained by neglecthg.1 L [

so that the denominator is approximated by A = Raz. In the

overdamped case (RB2 > 2R~2), this approximation is valid

when I ZO I <<Ra2/RP, while the corresponding condition in the

undamped case (R62 < 2Ra2) is \ Z.\ <<R.. The approximations

for the numerators give the additional restriction of ] Z~ I

<<I ZO I for the amplitude and ] Z. I <<I ZO+ZA I for the phase

spectrum to be valid. The first two inequalities determine the

frequency range over which the magnitude of the denominator

for a phase-locked oscillator is significantly increased above

the corresponding value for a free-running oscillator—thus

specifying the bandwidth of improved phase noise by injec-

tion locking.

D. S@rious Sidetones

The definitions (30) and (31) for R. and R6 show that a

high gain (ZO-0) corresponds to the overdamped case. Under-

damping is possible for low-gain amplifiers or injection-locked

oscillators with high locking power, depending on the phase

angles +0, 0, and +. In Section IV it was pointed out that

strong resonant effects occur at co,= RJ \ 2L I if Rfl+O [see

(35) and (36) ]. Thus spurious sidetones can be expected at

coo~cor in this limit.

As mentioned in Section II, Kenyon [6] has shown experi-

mentally that phase locking is possible around loops in the

impedance locus with high locking powers. Spurious side-

tones were observed in such locking. Since large variations of

the phase angles are expected in this case, it appears likely

that the sidebands are due to R8 <O in part of the impedance

loop.

E. Compa~ison of Free-Running and Phase-Locked Oscillator

A comparison of the noise spectra of a free-running and

phase-locked oscillator is shown in Fig. 4 for the special case

‘0’’’’’’”-2
LOG I+.SIZ

R

I+I:OCK,,

l~:OCK 2

“’F’’’’=’
Fig. 4. Comparison of Bode plots of amplitude and phase noise spectra

versus reactance for free-running aud Phase-1ocked oscillators. RoI
gives the residual circuit resistance for a higher input power thau RQ.z.
Note that the phase spectrum for a Phase-1ocked oscillator is deter-
mined by the Phase noise of the locking source close to the operating
frequency.

P.= 0, Zo = Ro, 2A= RA, and Z. =.jXm. No spurious sidebands

are expected, since RB2 = bRa2+RA2. Results are shown for

two different levels of the locking signal with Plock, I <Plook, Z.

It is assumed that changes in the ratio I V.\ 2/A 02can be ig-

nored. The phase noise of the locking signal dominates I # 12100k

close to the operating frequency. A significant improvement in

the phase spectrum is achieved for u < Ro/2L by phase lock-

ing. The amplitude spectrum is reduced by a factor 1 +Ro/R~

through injection locking.

VII. NOISE MEASURE

Adler and Haus [12] introduced the noke measure

M = @ – 1)/(1 – G-’) (41)

as a more meaningful quantity than the noise figure F [11]

to characterize the noise of linear amdifiers. The auantitv

G = PJPi is the gain of

the output and input

(4o) it is found that

G.= NO/Ni is given by

GnA~ = G/\

Gn~ll = G

for AM and FM noise,

will in most cases be

the carrier power with Po and Pi being

powers, respectively. From (39) and

the corresponding noise power gain

1 + ZAZO-1 /’ Cos’ (+0 + @ (42)

(43)

respectively. Thus the AM noise gain

substantially lower than the carrier

power gain. This low gain is indicative of a correspondingly

small amplification for sidebands of an AM signal, so that the

low gain cannot be expected to improve the AM SNR.

An expression relating the input voltage amplitude VO to

the input power Pi is needed in calculating the noise measure.

From the equivalent circuit in Fig. 1 it is found that

V02 = 8 I R. I F’;/(1 – G-’) (44)

where & = Re (Zd) gives the equivalent negative resistance

of the active device. The noise figures are obtained by using

the noise spectra (39) and (40) and assuming an input noise

power of kTO corresponding to the standard temperature
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290K within the bandwidth B. The thermal noise at the input

is white such that the noise power is shared equally between

AM and FM fluctuations. The corresponding noise measures

are found by using (41):

(45)

I Vnl’[l – I/Jvl cos(2@o+2e-x~ . (46)
MFN =

4k~@ \ R~ I COS2(r#~ + @

These expressions are natural extensions of the noise measure

introduced by Haus and Adler [12] to large-signal amplifiers

and locked oscillators. The results describe the nc)ise power

added by the intrinsic noise of the device and are independent

of the power gain. One additional complication as compared to

the linear case is introduced by the correlation coefficient pV.

However, it can be interpreted to be an integral part of the

intrinsic noise properties. In addition, the phase noise can be

enhanced by devic~circuit interactions through the factor

l/cos’ (@o+e) .

It is interesting to compare (45) and (46) to the optimum

noise measure derived by DeLoach [13] for negative-con-

ductance amplifiers. He found that

Mop, = I V.\ 2/4kToB I R, I (47)

which is identical to iWAM in the limit p,= O and to il/tFM in

the limit p.= O and @o+d= O.

It has been established that the noise measure represents

a meaningful quantity to characterize the noisiness of active

devices. Experimentally, this parameter can be determined

by measuring the carrier-to-noise ratio (P/iV):

[

2Pi
M= –1

kToB(P./~.)ssB ]/
(1 – G-’) (48)

assuming that the input noise is well described by To. For

DSB detection, the correlation between the sidebands a(u),

a(—co), and @(co), @(—Q) must be taken into account:

(~/P)DsB = 2(1 + \ P.,0 \ )(~/1’)ssB. (49)

The factor of 2 results from using only the single-sideband

(SSB) bandwidth B. It was pointed out in Section IV that

p.,b = 1 for all practical purposes (P >>N), since then a(a)
= ~x( _W) and ~(a) = o*( —Q). Thus the noise sidebands will

add on a voltage rather than a power basis such that (iV/P)DsB

‘4(~/~)SSEl.

VII 1. SUMMARYANDCONCLUSIONS

The amplitude and phase noise spectra of adiabatic single-

frequency oscillators and amplifiers have been studied. An

RWA was employed in deriving a linearized operator equa-

tion for the noise amplitudes. General expressions were ob-

tained for the amplitude and phase noise spectra by Fourier

transformation of this operator equation. Special considera-

tion was given to effects due to sideband correlation in the

equivalent noise source. The sideband and cross correlation

of the amplitude and phase noises were discussed as well. It

was pointed out that full sideband correlation is exlpected for

the amplitude and phase noises of well-designed oscillators and

amplifiers.

The correlation coefficient p, of sidebands of the noise

source had rather dramatic effects on the noise spectra in the

limits Re (pV) =pl+ ~ 1. A sharp reduction of the amplitude

noise close to the operating frequency results for pl+ — 1 with

a corresponding increase in the phase noise, while the roles are

reversed for pl+l.

The system determinant involved in solving for the noise

spectra determines the noise poles and the stability conditions.

Resonant effects, i.e., enhancement of the noise spectra, occur

at a = O when Ra+O and at u = W. = &/ 12L \ for &/RU-+O;

see (29)–(36), The onset of these resonances define the sta-

bility limits.

The case R.= O is typical of free-running oscillators and

gives rise to a phase instability. The corresponding pole for the

amplitude spectrum is canceled by a zero of the numerator.

The instability results from no energy difference being in-

volved in phase fluctuations and causes phase diffusion. It was

established that the phase noise of a free-running oscillator

is minimized for Re [Z~/Zo] = O, which was characterized as

“phase stabilization” by Lax [4]. Thus the oscillator is phase

stable if simultaneously the circuit resistance is independent

of frequency and the reactance is independent of the operating

level. Otherwise, the phase noise will be enhanced by the factor

l/cos2 (0–+) = [ ZA/Za 12/ [Im (Z.A/Zti) ]2 in the vicinity of the

operating frequency.

Phase-locked oscillators and amplifiers are both charac-

terized by the residual circuit impedance. Detailed expres-

sions were derived for the noise spectra including the effects

of a noisy input signal. The magnitude of the noise spectra

was minimized when the residual total impedance and the

amplitude sensitivity of the impedance combine to give

@ti+O = O. This condition is fulfilled at midband (XO = O) when

the reactance is independent of the large-signal current ampli-

tude.

The addition to the amplitude noise spectrum caused by a

noisy input signal is proportional to the amplitude noise of

this signal. This amplitude noise will partly convert into

phase fluctuations for @o+O #O. The full phase noise of the

locking signal will remain in the amplified signal.

Spurious sidetones can be expected at coofar for locked

oscillators and amplifiers when R~+O. This type of instability

might well explain experimental findings by Kenyon [6] that

sidetones are generated when locking around loops in the

impedance locus.

In characterization of device noise it is convenient to q uan-

tify the spectra in terms of the noise figure or noise measure.

The latter quantity gives a better representation of the in-

trinsic noise of the active device. The noise power gains of

AM and FM fluctuations are in general different. In most

cases, the AM noise gain is considerably lower. However, both

the noise measures reduce to the optimum result derived by

DeLoach [13] in the limit p, = O and ~0+19= O. For &+ f)#O,

the FM noise measure is enhanced by the factor l/cos2 (@o+ O).

Finally, it was pointed out that the noise measure can be de-

termined by experimentally measuring the carrier-to-noise

ratio.

The generality of the analysis enabled us to reproduce

some of Lax’s results for free-running oscillators [4] and to

generalize Kurokawa’s results for high-gain locked oscillators

[3] to take into account finite gains and correlation effects.

Our results are valid for any value of the locking gain, and can

also be used for large-signal amplifiers. It is concluded that the
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theory should be useful in characterizing and optimizing the

noise performance of active nonlinear devices (e. g., IMPATT,

BARITT, and Gunn diodes).

APPENDIX I

CORRELATION COEFFICIENT FOR SIDEBANDS

OF NOISE VOLTAGE SOURCE

The primary noise F(t) is assumed to be random and have

a white noise spectrum. In a nonlinear system, the resulting

open-circuit noise voltage will be related to the primary noise

through a Fourier expansion:

V.(coo + co) = 5 clm2@@o + @) (50)
m-—m

where CM are the coupling coefficients resulting from the non-

linearities. The sideband correlation is determined by the

product

V.(ao – a) V.(tio + u)

= x s clmc@(ml – @)F(k@o + co)

= ~ ~ C,,_#,~F*(mwo + ti)F(kwJo + CO). (51)
m k

By using the fact that F(t) has a white noise spectrum and

taking the statistical averages in (51), we find

(V._~n+) = \ F 1’ ~ c,,-~c,~ (52)
m==—m

where Vfi~ = Vn(uO ~oJ). The autocorrelation function at coois

given by

\ Vn(UO) 1’ = I F [2 ~ C,nC,~*. (53)
*—W

Now the correlation coefficient for the sidebands of the

noise voltage source can be found from (52) and (53):

i (2 - bom)c,mc,,-nl
(vn_vn+) ?n=o

“ = I ~n(wo)l, = Q (54)

Z(2 – 80P)I C,p\’
n=o

where we have used the condition V(UO+OJ) = V*( —ao —oJ).

Thus although the primary noise is white, the equivalent

voltage noise source of a nonlinear device will in general have

finite sideband correlations.

APPENDIX II

CROSS-CORRELATION COEFFICIENT FOR

AMPLITUDE AND PHASE FLUCTUATIONS

Experimentally, the cross correlation between the ampli-

tude and phase noise is relatively simple to measure. Thus this

quantity is important in experimental noise studies [8], [g].

A theoretical expression can be derived from (20) and (21).

By ignoring the noise of the input signal, the following expres-

sion is found for the cross spectrum:

2/vn/’
[Irn {ZOZ~*-pV*e2~@O[Zo(Zo+ZJ -202] }(a*@)= ~021 *12

+ j Re [ZO*(2ZO+ZJ –pv*e2~@OZuZ~]]. (55)

The cross-correlation coefficient is defined by

A@ = (a*@)/[1 U121 +1’]llz (56)

and thus, it is fully determined by (55), (25), and (26). Equa-

tion (55) shows that the cross-correlation coefficient in gen-

eral will be complex. The imaginary part can be measured

experimentally by introducing a relative phase shift of 90°

between the amplitude and phase noise components, as was

pointed out by Hashiguchi and Okoshi [9].
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